Fonctionnement d'une alimentation (2ème partie)

Régulation indépendante (suite)

Avant d'expliquer le fonctionnement du mag-amp, parlons un peu de ses caractéristiques. Il n'a que 2 états distincts dans notre application de régulation. Il peut être dans un état non saturé, c'est à dire qu'il possède une très grande inductance qui ne laisse pas passer le courant (enfin très peu car ce n'est pas une inductance infinie). A l'opposé, il peut être saturé, auquel cas son inductance chute brutalement à zéro, il devient alors un simple fil n'occasionnant qu'une infime chute de tension à ses bornes et le courant peut le traverser. Il se rapproche fortement d'un interrupteur idéal sans pertes.

Voici un exemple d'implémentation d'un mag-amp dans une alimentation simplifiée de topologie forward avec 2 tensions arbitraires dont l'une gère le découpage et l'autre s'autorégule grâce au mag-amp situé avant l'une des diodes Schottky. Il suffit d'imaginer une ligne supplémentaire en parallèle pour le 3.3 V, qui est identique au 5 V :


A la sortie du mag-amp (en V4), figure aussi la sortie d'un circuit noté "reset mag-amp" très important. C'est lui qui gère son comportement en le contraignant, grâce à une certaine tension appliquée en V4, à avoir un certain retard sur l'impulsion suivante.

Rentrons dans le détail avec ce schéma de la branche du 5 V où l'on remplace le circuit de reset par ce qu'il est, c'est à dire une source de tension ajustable notée Vc :


On suppose que le secondaire du transformateur (Ns) fournit une tension V1 alternative en créneau de +/-10 V et de période 20 µs. Sans le mag-amp et la tension Vc, la sortie filtrée serait donc du 5 V. On suppose aussi que le mag-amp L1 est déjà saturé avant d'arriver à t=0 et que Vc = -6 V. Juste avant t=0, le mag-amp était passant (un simple fil) et la tension en V3 valait 10 V (on néglige la chute de tension de la diode D2 pour l'explication). A t=0, la tension V1 devient négative à -10 V, ce qui bloque la diode D2. Le mag-amp voit alors à ses bornes une tension égale à V1+Vc (D1 est devenue passante), soit 4 V, qui vont rester durant le temps où V1 est négative, c'est à dire 10 µs. Durant ces 10 µs, un faible courant issu de Vc traverse le mag-amp et le force à revenir dans un état non saturé (le reset). On dit alors qu'on applique une remise à zéro de 4 V * 10 µs = 40 Vµs. Ce sont ces 40Vµs qui vont définir le temps de retard à imputer à l'impulsion suivante.

Quand t=10 µs, V1 change de signe et revient à +10 V. Le mag-amp étant revenu dans un état non saturé grâce au reset précédent, il ne va pas laisser passer le courant, qui arrive du transformateur, tout de suite. La tension aux points V2 et V3 restera à 0 V jusqu'à ce que le mag-amp soit à nouveau saturé à cause des 10 V à ses bornes. Toute l'astuce se situe ici car le temps que met le mag-amp à se saturer est défini grâce aux 40 Vµs qu'on a "préchargé" dans le noyau à l'impulsion négative précédente ! Le calcul des zones A et B est montré sur le graphique et comme elles sont de même surface (40 Vµs), on peut déduire que le temps de retard vaut 4 µs. Ce qu'on a accumulé en A, on le transfère en quelque sorte en B pour annuler une partie de l'impulsion. Quand ces 4 µs sont écoulés, le mag-amp devient saturé presque instantanément, son inductance chute brusquement et il laisse alors passer le courant sans opposer de résistance. Les tensions V2 et V3 (chute de tension de D2 négligée encore une fois) passent alors à 10 V et le cycle recommence...

Finalement, au lieu d'avoir du 5 V avec du 10 V haché à 50 % (alternances positives de V1 uniquement), on obtient du 3 V grâce à du 10 V haché à 6/20 = 0.3 soit 30 %. On a décalé le front montant des impulsions de 4 µs à chaque fois, on a donc diminué la valeur moyenne de la tension V3 une fois qu'elle aura été lissée. En modifiant Vc avec un petit système électronique, on modifie la surface de la zone A et donc celle de la zone B indirectement. Comme la tension maximale ne change pas, le retard est le seul paramètre à pouvoir évoluer. C'est comme ça qu'on peut réguler très précisément la tension en sortie, pour peu que la tension de reset Vc puisse être modifiée très finement.

Vous avez surement compris que pour une alimentation réelle, il suffit de faire la même chose que le 3.3 V avec le 5 V en introduisant un mag-amp juste avant l'une de ses 2 diodes de redressement et le tour est joué ! Ce deuxième mag-amp sera piloté, de la même manière que pour le 3.3 V, par rapport à la tension de sortie du 5 V pour s'adapter en temps réel aux conditions de charge en sortie. Il n'y a plus que le 12 V à réguler, ce qui ne pose pas de problème puisque la commande de découpage est toujours disponible et on peut l'utiliser rien que pour lui à présent. Le 12 V est donc la tension dont les variations piloteront directement l'étage de découpage, c'est sa régulation à lui. Les autres tensions s'ajusteront toutes seules grâce à leur mag-amp respectif. La régulation est alors devenue indépendante !

Si l'on charge beaucoup le 5 V et que le découpage ne change pas (12 V invariant), il faut être sûr que le mag-amp dispose de suffisamment de marge de manoeuvre pour que le 5 V soit maintenu à son niveau en faisant tendre le retard vers 0. Un mag-amp ne peut délivrer qu'une tension de sortie plus faible que la tension à son entrée donc il faut bien définir la hauteur des impulsions et la capacité du mag-amp sous peine d'être un peu trop limité.

Au final, ça en fait un moyen très efficace pour réguler des alimentations à sorties multiples, sans que les chargements sur une ou plusieurs lignes n'influencent la régulation de l'ensemble. On peut alors réduire la tolérance sur les variations de tension en sortie et Antec les définit par exemple à +/- 3 % contre +/- 5 % pour les alimentations classiques. Lors de tests sur une alimentation bien faite (Seasonic S12 500 W), les variations sur le 12 V de 0 à 100 % de sa capacité (chargement dissymétrique) sont de seulement 0.015 V.