Test : AMD Threadripper 2 vs. Intel Skylake-X, le choc des titans

1 : Introduction et aperçu 3 : Systèmes de test 4 : Benchmarks : jeux 5 : Benchmarks : station de travail 6 : Benchmarks : calculs 7 : Le refroidissement par air et ses limites 8 : XFR2 et Precision Boost Overdrive en pratique 9 : Consommation 10 : Conclusion

Precision Boost 2 et XFR2


Les processeurs AMD de la génération précédente bénéficiaient déjà du Precision Boost, une implémentation DVFS (Dynamic Voltage Frequency Scaling) similaire au Turbo Boost d’Intel, et de l’eXtended Frequency Range (XFR), deux technologies fournissant une augmentation supplémentaire de fréquence, sous réserve que la solution de refroidissement utilisée soit assez efficace. Cependant, la granularité de ces technologies est limitée.

Beaucoup d’applications, comme les jeux, utiliser plusieurs threads sans vraiment les utiliser tous en même temps. Ces processus « auxiliaires » plutôt légers sont exécutés sur des cœurs qui tournent à des fréquences de fonctionnement basses, ce qui réduit inutilement les performances : le processeur dispose en fait de réserves de puissance et d’enveloppe thermique pour travailler plus rapidement et plus efficacement.

Les nouveaux algorithmes Precision Boost 2 (qui a récemment fait ses débuts avec les processeurs Raven Ridge) et XFR2 améliorent les performances dans les charges de travail multithreads en adaptant la fréquence de n’importe quel coeur. Precision Boost 2 peut augmenter jusqu’à 500 MHz supplémentaires la fréquence d’horloge d’un coeur, tandis que XFR2 offre une augmentation supplémentaire de 7% si le système de refroidissement est suffisamment puissant.

Precision Boost Overdrive (PBO)

Les nouveaux Ryzen Threadripper communiquent avec le sous-système d’alimentation de la carte mère pour tester les performances en fonction des capacités d’alimentation existantes, vérifiant continuellement la marge disponible en terme d’intensité du courant (Thermal Design Current) et de puissance (Package Power Tracking). L’Eletrical Design Current (EDC) permet de son côté de surveiller l’intensité maximale de courant pour les VRM, lors des phases transitoires ou de pointe.

Une boucle de contrôle rapporte en temps réel ces diverses informations à l’
Infinity Fabric, ce qui permet au processeur de moduler dynamiquement les performances en fonction des conditions de chaleur et de puissance. Certaines de ces valeurs peuvent être affichées par le logiciel d’overclocking Ryzen Master 1.4, si le BIOS de la carte mère le supporte.

AMD a également mis à jour le logiciel d’overclocking Ryzen Master pour les nouveaux Threadripper et a ajouté d’autres fonctions dont Precision Boost Overdrive (PBO). Le logiciel identifie les cœurs les plus rapides (le logiciel identifie d’une étoile le coeur testé comme étant le plus rapide dans chaque CCX) et communique parfaitement avec le sous-système d’alimentation des cartes mères, qui offre de nombreuses nouvelles fonctions de surveillance d’overclocking. Les Threadripper 2 disposent également d’une suite SenseMI améliorée, tout comme la série 2000 Ryzen d’AMD.

Sommaire :

  1. Introduction et aperçu
  2. Precision Boost 2 et XFR2
  3. Systèmes de test
  4. Benchmarks : jeux
  5. Benchmarks : station de travail
  6. Benchmarks : calculs
  7. Le refroidissement par air et ses limites
  8. XFR2 et Precision Boost Overdrive en pratique
  9. Consommation
  10. Conclusion