Comparatif : neuf GeForce GTX 1070 Ti en test

Gainward GTX 1070 Ti Phoenix

La marque Gainward appartenant à Palit, les cartes des deux constructeurs ne se différencient en général que de par leur look, les ventilateurs utilisés, fréquences et durée de la garantie respectives. Les similarités sont encore plus grandes sur cette GeForce GTX 1070 Ti, dont la fréquence de base reste la même pour toutes les cartes.

Nous allons donc examiner de près l'adaptation d'un système déjà existant sur une GeForce GTX 1070 Ti, et là où on a éventuellement fait des économies. Car il faut bien le dire : aucun constructeur ne s'est donné beaucoup de peine pour innover à la sortie des GeForce GTX 1070 Ti.

Sur la boite, on remarque le logo Golden Sample qui est repris sur la coque de la carte. Cet exemplaire a donc été produit avant que Nvidia ne se décide finalement à fixer la fréquence pour toutes les GeForce GTX 1070 Ti.

Déballage, dimensions et connectique

Dans la boite, on retrouve le DVD d'installation habituel et un manuel. Nous reviendrons plus tard sur les caractéristiques du PCB et les composants employés. Commençons par un tableau récapitulatif des dimensions et caractéristiques générales : 

Dimensions, connectique, spécificités
Longueur
28,7 cm (de l'équerre à l'extrémité de la coque)
Hauteur
12,8 cm (de la fente à l'extrémité de la coque)
Épaisseur
5,2 cm (format 2,5 slot)
Plaque arrière dépassant de 5 mm
Poids
1181 grammes
Plaque arrière
Oui, participe au refroidissement
RefroidissementPar air
Ailettes à la verticale
Ventilateurs
2 ventilateurs de 10 cm (pales de 9,5 cm)
15 pales par ventilateur
Mode semi-passif
Connectique
3 sorties DisplayPort 1.4
1 sortie HDMI 2.0
1 sortie Dual-Link DVI-I
Autres connecteurs
2x SLI Connector
Alimentation électrique
Un connecteur à 8 broches et un à 6 broches

La carte sous tous les angles

La coque du système de refroidissement est constituée d'un plastique noir mat épais sur lequel on a appliqué de fines lamelles métalliques rouges et or. La carte pèse 1181 grammes ; elle est longue de 28,7 cm, haute de 12,8 cm et épaisse de 5,2 cm. Elle occupe donc trois slots. Les deux ventilateurs de 10 cm, dont l'amplitude des pales atteint 9,6 cm, complètent l'impression d'une carte massive.

L'arrière du PCB est recouvert d'une plaque arrière en aluminium noir, sauf au niveau du package GPU où une ouverture a été aménagée. Elle dépasse d’environ 5 mm à l’arrière, ce qui pourrait poser problème dans des configurations multi-GPU.

Le dessus de la carte est paré d'un panneau rétroéclairé (contrôlable de manière logicielle) sur lequel "Gainward" s'affiche en grand. On retrouve à l'extrémité de la carte deux entrées d'alimentation PCIe, l'une à huit broches, l'autre à six. De par sa taille et son look, la carte ne passera donc pas inaperçue dans un boitier.

L'extrémité de la carte est close : les ailettes du radiateur sont en effet orientées à la verticale et ne poussent donc pas le flux d'air vers les extrémités de la carte.


L’équerre PCI propose les cinq sorties habituelles, dont quatre au maximum sont utilisables simultanément. Outre un Dual Link DVI-D, on retrouve une sortie HDMI 2.0 et trois DisplayPort 1.4. Le reste de l’équerre est parsemé d’ouvertures d’aérations à caractère plutôt décoratif vue l’orientation des lamelles du radiateur.    

Le PCB bien ordonné reprend le design de la GeForce GTX 1080 tout en apportant quelques modifications. À la place de 4+2 phases, où les quatre phases GPU étaient doublées pour un total de huit circuits de conversion du courant, la mémoire sur cette GeForce GTX 1070 Ti doit se contenter d'une seule phase.

PCB et alimentation

Sur les deux cartes, on déplore l'absence d'une neuvième puce power stage, avec laquelle on aurait pu mettre en place un load balancer pour la phase principale entre la fente de la carte mère et les entrées d'alimentation PCIe.  Les phases se voient donc attribuer une entrée d'alimentation de manière fixe et aucune variation n'est possible.

Gainward utilise un contrôleur PWM µP9511 de uPI Semiconductor Corp ; il est placé à l'arrière du PCB. La phase mémoire est gérée par un contrôleur Buck dédié. Les huit circuits de conversion du courant du GPU utilisent un SiC632 de Vishay, une puce power stage intégrée avec high side, low side et driver. La phase mémoire utilise un S7340 de Sinopower ; il s'agit d'un simple MOSFET à double canal N. 

L'étage de conversion du courant est bien aligné comme on peut le voir aussi à l'arrière du PCB. Gainward en a profité cette fois-ci pour ajouter un pad thermique à leur niveau, ce qui permet d'utiliser la plaque arrière pour le refroidissement des VRM.

Consommation dans différents scénarios

La consommation en jeu dépasse de 15 W la cible de puissance Nvidia fixée à 180 W. Gainward a légèrement augmenté la cible de puissance, ce qui permet de contourner l'interdiction édictée par Nvidia de ne pas overclocker par défaut. Ainsi, si la fréquence de base reste la même, la fréquence de Boost est plus élevée et plus stable, comme nous le verrons plus tard.

La consommation reste quasiment identique en test de torture. Si on pousse la cible de puissance au maximum, ici à 120 %, la carte se montre étonnamment économe en énergie, puisqu'elle ne consomme que 206 W sur les 240 W autorisés. Nous avons donc affaire à un chip d'excellente qualité. La carte est presque exclusivement limitée par la tension. 

Voici le graphique d’évolution de la tension en jeu et en test de torture lorsque la carte n’est pas overclockée ; on voit très bien l'effet bénéfique du Power Target relevé qui permet une tension particulièrement stable en jeu :

Respect des normes

Avec 3,7 A au maximum en test de torture, la carte respecte la norme PCI SIG qui préconise de ne pas tirer plus de 5 A (66W) sur la ligne 12 V du slot de la carte mère. En jeu, on se situe à 3,1 A, même après overclocking. La répartition de la charge entre les différentes entrées de la carte est donc exemplaire. 

Overclocking

Les limites de la carte sont identiques à celles de la concurrence au Power Target équivalent. Ce dernier se laisse augmenter à 120% ; la carte consomme alors environ 206 W et est principalement limitée par la tension. Nous n'avons eu aucun mal à augmenter la fréquence GPU de 200 MHz et 150 MHz pour la mémoire. Le système demeurait alors parfaitement stable. 

Températures et fréquences

Voici le tableau récapitulatif de la température et de la fréquence de Boost en début et en fin de test : 


Début
Fin
Sur banc de test
Temp. GPU
27 °C
64 °C
Fréquence GPU
1911 MHz
1873 MHz
Temp. ambiante
22 °C
22 °C
Boitier fermé
Temp. GPU
29 °C
66 °C
Fréquence GPU
1911 MHz
1860 MHz
Temp. dans boitier
22°C
41°C
OC (Sur banc de test)
Temp. GPU (ca. 2300 U/min)
29 °C
65 °C
Fréquence GPU
2101 MHz
2076 MHz
Temp. ambiante22°C
22°C

Graphiques d’évolution de la température et de la fréquence

Pour mieux cerner le rapport entre ces deux paramètres, voici le tableau de l’évolution de la température et de la fréquence en jeu et en test de torture pendant les 15 premières minutes d’échauffement :

Analyse infrarouge de la répartition des températures sur le PCB

Pour finir cette partie, observons les images infrarouges illustrant la répartition des températures sur la face arrière du PCB.

En jeu et overclockée

En jeu, tous les composants sont bien refroidis grâce au radiateur efficace et au flux d'air des ventilateurs. Pour améliorer encore la température des VRM, on a placé un large pad thermique sous ces derniers pour que la plaque arrière participe au refroidissement. On gagne ainsi deux à trois degrés. 

Boitier fermé, les températures montent de trois à quatre degrés, mais restent très raisonnables. 

Si on overclocke la carte boitier fermé sans toucher au comportement des ventilateurs, le flux d'air parvient encore à dissiper correctement les 206 W de chaleur générés et la température au niveau du socket reste sous les 73°C tandis que celle des VRM atteint un petit 73°C. On en déduit que le système de refroidissement possède suffisamment de réserves.

Test de torture

En test de torture, la charge se déplace du GPU vers les convertisseurs de tension GPU et mémoire, mais les températures restent peu élevées. 

Boitier fermé, les températures montent d'environ quatre degrés aux points névralgiques, pas plus. Il n'y a donc aucun souci à se faire au niveau des températures. 

Système de refroidissement et plaque arrière

Ce que la carte consomme de courant, produit son équivalent en chaleur, et c’est au système de refroidissement de la dissiper pour éviter la surchauffe. Pour la première fois, la plaque arrière participe au refroidissement et ne laisse pas tout le boulot au massif ventirad à l'avant. Lors du test de la GeForce GTX 1080, nous avions proposé d'améliorer les températures en retirant le film protecteur de la plaque arrière au niveau des convertisseurs de tension GPU pour y placer à la place un large pad thermique. C'est ici chose faite et nous nous en félicitons. 

Le système de refroidissement
Type de refroidissement
Refroidissement par air
Bloc de refroidissement
Bloc de refroidissement en cuivre pour le GPU
Refroidissement de la mémoire  et des VRM via le cadre de maintien
Lamelles du radiateur
En aluminium, orientées à la verticale, peu espacées
Caloducs
2x 8 mm et 2x 6 mm, cuivre et matériaux composites
Refroidissement des VRM
Via un bloc de refroidissement dédié
Refroidissement de la mémoire
Via cadre de maintien et indirectement le bloc de refroidissement GPU
Ventilateurs2 ventilateurs de 10 cm (pales de 9,5 mm)
15 pales par ventilateur
mode semi passif
Plaque arrière
En aluminium
Participe au refroidissement via un pad thermique

Le bloc de refroidissement en cuivre pour le GPU transmet la chaleur aux cinq caloducs (trois de 8 mm d'épaisseur et deux de 6 mm). Gainward a choisi d'orienter les lamelles du radiateur à la verticale, ce qui permet d'éviter de tordre les trois caloducs de 8 mm et permet ainsi une efficacité accrue. Les deux caloducs restants transmettent la chaleur vers les extrémités du radiateur recouvrant le bloc de refroidissement. 

La performance de ce ventirad massif est excellente. La cible de température est fixée à 70°C, ce qui devrait le rendre très silencieux, sauf bien sûr, si le boitier n'est pas suffisamment aéré. 

Nuisances sonores

Les courbes d'évolution de la vitesse des ventilateurs diffèrent significativement, selon que le test est fait boitier fermé ou sur table de benchmark. En effet, dans un boitier fermé, comme les lamelles du radiateur sont placées à la verticale, la carte a tendance à aspirer à nouveau l'air chaud qu'elle venait d'expulser. Il faudra donc faire particulièrement attention à optimiser le flux d'air au sein du boitier. 

On observe un comportement similaire en test de torture. On peut donc conclure que les deux larges ventilateurs sont plus que suffisants pour refroidir la carte. Mais on aurait pu encore améliorer les nuisances sonores si on avait optimisé la coque du système de refroidissement de manière à éviter que l'air chaud soufflé ne soit à nouveau aspiré. 

Nous avions fait part de ces remarques au chef de produit lors de notre visite chez Palit l'été dernier, mais il semblerait que l'idée n'ait pas encore été mise en pratique, en raison sans doute des stocks importants à écouler. 

La carte possède donc les réserves nécessaires pour baisser la vitesse des ventilateurs. Mais cela coûterait probablement un palier de Boost. L'idéal étant d'expérimenter un peu avec les réglages manuels. 

Vitesse des ventilateurs et nuisances sonores
Vitesse max. des ventilateurs sur banc de benchmark
1037 tpm
Vitesse moy. des ventilateurs sur banc de benchmark
1004 tpm
Vitesse max. des ventilateurs boitier fermé1183 tpm
Vitesse moy. des ventilateurs boitier fermé1135 tpm
Nuisances sonores maximales
38,9 dB(A)
Nuisances sonores moyennes
37.4 dB(A)
Nuisances sonores au repos
0 dB(A)
Impressions subjectives / Caractéristiques du son

- bruits de roulements
- bruits de moteur aux alentours de 1 KHz
- bruits d'air modérés
- léger crissement des convertisseurs de tension

Voici le graphique détaillé du spectre sonore de la carte réalisé dans notre laboratoire et qui vient compléter nos impressions subjectives : 

Notre appareil de mesure communique une moyenne de 38,9 dB, ce qui tout à fait acceptable au vu des températures. On aurait pu encore facilement rendre la carte plus silencieuse, sans que les températures n'en pâtissent trop. Dans la masse sonore, on distingue le bruit engendré par le moteur et les roulements, mais aussi le léger crissement des convertisseurs de tension. Les bobines ne sont pas vraiment silencieuses, mais elles ne sont pas non plus agaçantes.

Verdict

Posez une question dans la catégorie Les news : vos réactions du forum
2 commentaires
Commenter depuis le forum
    Votre commentaire
  • doyvince
    Bonsoir, question bête mais pourquoi pas de Asus dans ce comparatif comme pour celui des 1080 d'ailleurs ? Seulement la 1070 rog strix. Pas de sarcasmes ici, c'est une vraie question.
  • Basturbe
    La réponse est dans la question : "Asus GTX 1070 Ti Strix Gaming ROG".
    Après je pense qu'ils sont déjà content d'avoir reçu 9 cartes de la part des constructeurs . Concrètement les cartes ne permettant pas l'oc (car bloquée par nvidia sur ce modèle) c'est sans doute le test le plus chiant qu'ils aient eu à faire depuis longtemps. En gros tu ne fais que constater les différences de températures et de nuisance sonore..